SENSORS 3/09 TRANSDUCERS

Sensors & Transducers

Volume 102, Issue 3 March 2009

www.sensorsportal.com

ISSN 1726-5479

Editor-in-Chief: professor Sergey Y. Yurish, phone: +34 696067716, fax: +34 93 4011989, e-mail: editor@sensorsportal.com

Editors for Western Europe

Meijer, Gerard C.M., Delft University of Technology, The Netherlands Ferrari, Vittorio, Universitá di Brescia, Italy

Editor South America

Costa-Felix, Rodrigo, Inmetro, Brazil

Editor for Eastern Europe

Sachenko, Anatoly, Ternopil State Economic University, Ukraine

Editors for North America

Datskos, Panos G., Oak Ridge National Laboratory, USA Fabien, J. Josse, Marquette University, USA Katz, Evgeny, Clarkson University, USA

Editor for Asia

Ohyama, Shinji, Tokyo Institute of Technology, Japan

Editor for Asia-Pacific

Mukhopadhyay, Subhas, Massey University, New Zealand

Editorial Advisory Board

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia

Ahmad, Mohd Noor, Nothern University of Engineering, Malaysia

Annamalai, Karthigeyan, National Institute of Advanced Industrial Science and Technology, Japan

Arcega, Francisco, University of Zaragoza, Spain

Arguel, Philippe, CNRS, France

Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea

Arndt, Michael, Robert Bosch GmbH, Germany Ascoli, Giorgio, George Mason University, USA

Atalay, Selcuk, Inonu University, Turkey Atghiaee, Ahmad, University of Tehran, Iran

Augutis, Vygantas, Kaunas University of Technology, Lithuania

Avachit, Patil Lalchand, North Maharashtra University, India

Ayesh, Aladdin, De Montfort University, UK

Bahreyni, Behraad, University of Manitoba, Canada

Baoxian, Ye, Zhengzhou University, China Barford, Lee, Agilent Laboratories, USA

Barlingay, Ravindra, RF Arrays Systems, India

Basu, Sukumar, Jadavpur University, India

Beck, Stephen, University of Sheffield, UK

Ben Bouzid, Sihem, Institut National de Recherche Scientifique, Tunisia

Benachaiba, Chellali, Universitaire de Bechar, Algeria

Binnie, T. David, Napier University, UK

Bischoff, Gerlinde, Inst. Analytical Chemistry, Germany

Bodas, Dhananjay, IMTEK, Germany

Borges Carval, Nuno, Universidade de Aveiro, Portugal

Bousbia-Salah, Mounir, University of Annaba, Algeria

Bouvet, Marcel, CNRS - UPMC, France

Brudzewski, Kazimierz, Warsaw University of Technology, Poland

Cai, Chenxin, Nanjing Normal University, China

Cai, Qingyun, Hunan University, China

Campanella, Luigi, University La Sapienza, Italy

Carvalho, Vitor, Minho University, Portugal

Cecelja, Franjo, Brunel University, London, UK

Cerda Belmonte, Judith, Imperial College London, UK

Chakrabarty, Chandan Kumar, Universiti Tenaga Nasional, Malaysia

Chakravorty, Dipankar, Association for the Cultivation of Science, India

Changhai, Ru, Harbin Engineering University, China

Chaudhari, Gajanan, Shri Shivaji Science College, India

Chen, Jiming, Zhejiang University, China

Chen, Rongshun, National Tsing Hua University, Taiwan

Cheng, Kuo-Sheng, National Cheng Kung University, Taiwan

Chiang, Jeffrey (Cheng-Ta), Industrial Technol. Research Institute, Taiwan

Chiriac, Horia, National Institute of Research and Development, Romania

Chowdhuri, Arijit, University of Delhi, India

Chung, Wen-Yaw, Chung Yuan Christian University, Taiwan

Corres, Jesus, Universidad Publica de Navarra, Spain

Cortes, Camilo A., Universidad Nacional de Colombia, Colombia

Courtois, Christian, Universite de Valenciennes, France

Cusano, Andrea, University of Sannio, Italy

D'Amico, Arnaldo, Università di Tor Vergata, Italy

De Stefano, Luca, Institute for Microelectronics and Microsystem, Italy

Deshmukh, Kiran, Shri Shivaji Mahavidyalaya, Barshi, India

Dickert, Franz L., Vienna University, Austria Dieguez, Angel, University of Barcelona, Spain

Dimitropoulos, Panos, University of Thessaly, Greece

Ding Jian, Ning, Jiangsu University, China

Djordjevich, Alexandar, City University of Hong Kong, Hong Kong

Donato, Nicola, University of Messina, Italy

Donato, Patricio, Universidad de Mar del Plata, Argentina

Dong, Feng, Tianjin University, China

Drljaca, Predrag, Instersema Sensoric SA, Switzerland

Dubey, Venketesh, Bournemouth University, UK

Enderle, Stefan, University of Ulm and KTB Mechatronics GmbH,

Erdem, Gursan K. Arzum, Ege University, Turkey

Erkmen, Aydan M., Middle East Technical University, Turkey

Estelle, Patrice, Insa Rennes, France

Estrada, Horacio, University of North Carolina, USA

Faiz, Adil, INSA Lyon, France

Fericean, Sorin, Balluff GmbH, Germany

Fernandes, Joana M., University of Porto, Portugal

Francioso, Luca, CNR-IMM Institute for Microelectronics and Microsystems, Italy

Francis, Laurent, University Catholique de Louvain, Belgium

Fu, Weiling, South-Western Hospital, Chongqing, China

Gaura, Elena, Coventry University, UK

Geng, Yanfeng, China University of Petroleum, China

Gole, James, Georgia Institute of Technology, USA Gong, Hao, National University of Singapore, Singapore

Gonzalez de la Rosa, Juan Jose, University of Cadiz, Spain

Granel, Annette, Goteborg University, Sweden

Graff, Mason, The University of Texas at Arlington, USA

Guan, Shan, Eastman Kodak, USA

Guillet, Bruno, University of Caen, France

Guo, Zhen, New Jersey Institute of Technology, USA

Gupta, Narendra Kumar, Napier University, UK

Hadjiloucas, Sillas, The University of Reading, UK

Hashsham, Syed, Michigan State University, USA Hernandez, Alvaro, University of Alcala, Spain

Hernandez, Wilmar, Universidad Politecnica de Madrid, Spain

Homentcovschi, Dorel, SUNY Binghamton, USA

Horstman, Tom, U.S. Automation Group, LLC, USA

Hsiai, Tzung (John), University of Southern California, USA

Huang, Jeng-Sheng, Chung Yuan Christian University, Taiwan

Huang, Star, National Tsing Hua University, Taiwan Huang, Wei, PSG Design Center, USA

Hui, David, University of New Orleans, USA

Jaffrezic-Renault, Nicole, Ecole Centrale de Lyon, France Jaime Calvo-Galleg, Jaime, Universidad de Salamanca, Spain

James, Daniel, Griffith University, Australia

Janting, Jakob, DELTA Danish Electronics, Denmark Jiang, Liudi, University of Southampton, UK

Jiang, Wei, University of Virginia, USA

Jiao, Zheng, Shanghai University, China

John, Joachim, IMEC, Belgium

Kalach, Andrew, Voronezh Institute of Ministry of Interior, Russia

Kang, Moonho, Sunmoon University, Korea South

Kaniusas, Eugenijus, Vienna University of Technology, Austria

Katake, Anup, Texas A&M University, USA

Kausel, Wilfried, University of Music, Vienna, Austria

Kavasoglu, Nese, Mugla University, Turkey

Ke, Cathy, Tyndall National Institute, Ireland

Khan, Asif, Aligarh Muslim University, Aligarh, India

Kim, Min Young, Kyungpook National University, Korea South Sandacci, Serghei, Sensor Technology Ltd., UK

Ko, Sang Choon, Electronics and Telecommunications Research Institute, Korea South

Kockar, Hakan, Balikesir University, Turkey

Kotulska, Malgorzata, Wroclaw University of Technology, Poland

Kratz, Henrik, Uppsala University, Sweden Kumar, Arun, University of South Florida, USA

Kumar, Subodh, National Physical Laboratory, India

Kung, Chih-Hsien, Chang-Jung Christian University, Taiwan

Lacnjevac, Caslav, University of Belgrade, Serbia

Lay-Ekuakille, Aime, University of Lecce, Italy

Lee, Jang Myung, Pusan National University, Korea South

Lee, Jun Su, Amkor Technology, Inc. South Korea

Lei, Hua, National Starch and Chemical Company, USA

Li, Genxi, Nanjing University, China

Li, Hui, Shanghai Jiaotong University, China

Li, Xian-Fang, Central South University, China

Liang, Yuanchang, University of Washington, USA

Liawruangrath, Saisunee, Chiang Mai University, Thailand

Liew, Kim Meow, City University of Hong Kong, Hong Kong

Lin, Hermann, National Kaohsiung University, Taiwan

Lin, Paul, Cleveland State University, USA

Linderholm, Pontus, EPFL - Microsystems Laboratory, Switzerland

Liu, Aihua, University of Oklahoma, USA

Liu Changgeng, Louisiana State University, USA

Liu, Cheng-Hsien, National Tsing Hua University, Taiwan

Liu, Songqin, Southeast University, China

Lodeiro, Carlos, Universidade NOVA de Lisboa, Portugal

Lorenzo, Maria Encarnacio, Universidad Autonoma de Madrid, Spain

Lukaszewicz, Jerzy Pawel, Nicholas Copernicus University, Poland

Ma, Zhanfang, Northeast Normal University, China

Majstorovic, Vidosav, University of Belgrade, Serbia

Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados, Mexico

Matay, Ladislav, Slovak Academy of Sciences, Slovakia

Mathur, Prafull, National Physical Laboratory, India

Maurya, D.K., Institute of Materials Research and Engineering, Singapore

Mekid, Samir, University of Manchester, UK

Melnyk, Ivan, Photon Control Inc., Canada

Mendes, Paulo, University of Minho, Portugal Mennell, Julie, Northumbria University, UK

Mi, Bin, Boston Scientific Corporation, USA

Minas, Graca, University of Minho, Portugal

Moghavvemi, Mahmoud, University of Malaya, Malaysia

Mohammadi, Mohammad-Reza, University of Cambridge, UK

Molina Flores, Esteban, Benemérita Universidad Autónoma de Puebla, Mexico

Moradi, Majid, University of Kerman, Iran

Morello, Rosario, DIMET, University "Mediterranea" of Reggio Calabria,

Mounir, Ben Ali, University of Sousse, Tunisia

Mulla, Imtiaz Sirajuddin, National Chemical Laboratory, Pune, India

Neelamegam, Periasamy, Sastra Deemed University, India

Neshkova, Milka, Bulgarian Academy of Sciences, Bulgaria

Oberhammer, Joachim, Royal Institute of Technology, Sweden

Ould Lahoucine, Cherif, University of Guelma, Algeria

Pamidighanta, Sayanu, Bharat Electronics Limited (BEL), India

Pan, Jisheng, Institute of Materials Research & Engineering, Singapore

Park, Joon-Shik, Korea Electronics Technology Institute, Korea South

Penza, Michele, ENEA C.R., Italy

Pereira, Jose Miguel, Instituto Politecnico de Setebal, Portugal

Petsev, Dimiter, University of New Mexico, USA

Pogacnik, Lea, University of Ljubljana, Slovenia Post, Michael, National Research Council, Canada

Prance, Robert, University of Sussex, UK Prasad, Ambika, Gulbarga University, India

Prateepasen, Asa, Kingmoungut's University of Technology, Thailand

Pullini, Daniele, Centro Ricerche FIAT, Italy

Pumera, Martin, National Institute for Materials Science, Japan

Radhakrishnan, S. National Chemical Laboratory, Pune, India

Rajanna, K., Indian Institute of Science, India

Ramadan, Qasem, Institute of Microelectronics, Singapore Rao, Basuthkar, Tata Inst. of Fundamental Research, India Raoof, Kosai, Joseph Fourier University of Grenoble, France

Reig, Candid, University of Valencia, Spain

Restivo, Maria Teresa, University of Porto, Portugal

Robert, Michel, University Henri Poincare, France

Rezazadeh, Ghader, Urmia University, Iran

Royo, Santiago, Universitat Politecnica de Catalunya, Spain

Rodriguez, Angel, Universidad Politecnica de Cataluna, Spain

Rothberg, Steve, Loughborough University, UK

Sadana, Ajit, University of Mississippi, USA

Sadeghian Marnani, Hamed, TU Delft, The Netherlands

Sapozhnikova, Ksenia, D.I.Mendeleyev Institute for Metrology, Russia

Saxena, Vibha, Bhbha Atomic Research Centre, Mumbai, India

Schneider, John K., Ultra-Scan Corporation, USA

Seif, Selemani, Alabama A & M University, USA

Seifter, Achim, Los Alamos National Laboratory, USA Sengupta, Deepak, Advance Bio-Photonics, India

Shankar, B. Baliga, General Monitors Transnational, USA

Shearwood, Christopher, Nanyang Technological University, Singapore

Shin, Kyuho, Samsung Advanced Institute of Technology, Korea Shmaliy, Yuriy, Kharkiv National University of Radio Electronics, Ukraine

Silva Girao, Pedro, Technical University of Lisbon, Portugal

Singh, V. R., National Physical Laboratory, India

Slomovitz, Daniel, UTE, Uruguay

Smith, Martin, Open University, UK

Soleymanpour, Ahmad, Damghan Basic Science University, Iran

Somani, Prakash R., Centre for Materials for Electronics Technol., India

Srinivas, Talabattula, Indian Institute of Science, Bangalore, India

Srivastava, Arvind K., Northwestern University, USA

Stefan-van Staden, Raluca-Ioana, University of Pretoria, South Africa

Sumriddetchka, Sarun, National Electronics and Computer Technology Center, Thailand

Sun, Chengliang, Polytechnic University, Hong-Kong

Sun, Dongming, Jilin University, China

Sun, Junhua, Beijing University of Aeronautics and Astronautics, China

Sun, Zhiqiang, Central South University, China

Suri, C. Raman, Institute of Microbial Technology, India

Sysoev, Victor, Saratov State Technical University, Russia

Szewczyk, Roman, Industrial Research Institute for Automation and Measurement, Poland

Tan, Ooi Kiang, Nanyang Technological University, Singapore,

Tang, Dianping, Southwest University, China

Tang, Jaw-Luen, National Chung Cheng University, Taiwan

Teker, Kasif, Frostburg State University, USA

Thumbavanam Pad, Kartik, Carnegie Mellon University, USA

Tian, Gui Yun, University of Newcastle, UK

Tsiantos, Vassilios, Technological Educational Institute of Kaval, Greece

Tsigara, Anna, National Hellenic Research Foundation, Greece

Twomey, Karen, University College Cork, Ireland

Valente, Antonio, University, Vila Real, - U.T.A.D., Portugal

Vaseashta, Ashok, Marshall University, USA

Vazquez, Carmen, Carlos III University in Madrid, Spain

Vieira, Manuela, Instituto Superior de Engenharia de Lisboa, Portugal

Vigna, Benedetto, STMicroelectronics, Italy

Vrba, Radimir, Brno University of Technology, Czech Republic

Wandelt, Barbara, Technical University of Lodz, Poland

Wang, Jiangping, Xi'an Shiyou University, China Wang, Kedong, Beihang University, China

Wang, Liang, Advanced Micro Devices, USA

Wang, Mi, University of Leeds, UK

Wang, Shinn-Fwu, Ching Yun University, Taiwan Wang, Wei-Chih, University of Washington, USA

Wang, Wensheng, University of Pennsylvania, USA

Watson, Steven, Center for NanoSpace Technologies Inc., USA

Weiping, Yan, Dalian University of Technology, China Wells, Stephen, Southern Company Services, USA

Wolkenberg, Andrzej, Institute of Electron Technology, Poland

Woods, R. Clive, Louisiana State University, USA

Wu, DerHo, National Pingtung University of Science and Technology, Taiwan

Wu, Zhaoyang, Hunan University, China

Xiu Tao, Ge, Chuzhou University, China

Xu, Lisheng, The Chinese University of Hong Kong, Hong Kong

Xu, Tao, University of California, Irvine, USA Yang, Dongfang, National Research Council, Canada

Yang, Wuqiang, The University of Manchester, UK

Ymeti, Aurel, University of Twente, Netherland

Yong Zhao, Northeastern University, China Yu, Haihu, Wuhan University of Technology, China

Yuan, Yong, Massey University, New Zealand

Yufera Garcia, Alberto, Seville University, Spain

Zagnoni, Michele, University of Southampton, UK Zeni, Luigi, Second University of Naples, Italy

Zhong, Haoxiang, Henan Normal University, China

Zhang, Minglong, Shanghai University, China Zhang, Qintao, University of California at Berkeley, USA

Zhang, Weiping, Shanghai Jiao Tong University, China

Zhang, Wenming, Shanghai Jiao Tong University, China

Zhou, Zhi-Gang, Tsinghua University, China Zorzano, Luis, Universidad de La Rioja, Spain

Zourob, Mohammed, University of Cambridge, UK

Contents

Volume 102 Issue 3 March 2009

www.sensorsportal.com

ISSN 1726-5479

Research Articles	
Smart Sensor Systems: Book Review	I
Design of a Smart and High Precision Industrial Temperature Measurement and Monitoring System Using K-type Thermocouple and SPI-compatible Temperature Sensor Utpal Sarma, Digbijoy Chakraborty, P. K. Boruah	1
IEEE 1451.0-2007 Compatible Smart Sensor Readout with Error Compensation Using FPGA J. Kamala and B. Umamaheswari	10
Predicting the Deflections of Micromachined Electrostatic Actuators Using Artificial Neural Network (ANN) Hing Wah Lee, Mohd. Ismahadi Syono and Ishak Hj. Abd. Azid	22
Conception and Development of a Portable Electronic Nose System for Classification of Raw Milk Using Principal Component Analysis Approach Hing Wah Lee, Mohd. Ismahadi Syono and Ishak Hj. Abd. Azid	33
Viscosity Measurement Using Microcontroller to Study the Thermal Degradation of Edible Oil Neelameagam Periyasamy, Rubalya Valantina Sathianathan and Murugananthan Krishnamoorthy	45
Problems of Terminology in the Field of Measuring Instruments with Elements of Artificial Intelligence Roald Taymanov, Ksenia Sapozhnikova	51
Microcontroller Based Closed Loop PMDC Motor Position Control System Subrata Chattopadhyay, Utpal Chakraborty, Arindam Bhakta and Sagarika Pal	62
Discrete Time Sliding Mode Control Using Fast Output Sampling Feedback for Piezoelectric Actuated Structures L. R. Karl Marx, M. Umapathy, A. Girija, D. Ezhilarasi	71
A Particle Swarm Optimization of Natural Ventilation Parameters in a Greenhouse with Continuous Roof Vents Abdelhafid Hasni, Belkacem Draoui, Thierry Boulard, Rachid Taibi and Brahim Dennai	84
Experimental and Computational Study of Two-phase (Air–Palm Oil) Flow through Pipe and Control Valve in Series Arivazhagan M., Pugalenthi, Krishna Karthik K., Rani Hemamalini, Sundaram S	94
The Effect on Pressure Drop across Control Valve for Two Phase Flow (Air-Water) Arivazhagan M, Krishna Karthik K, Sundaram S	105
RBIC-Lite – a Family of Signal Conditioning ICs of ZMD Krauss Gudrun, Krauss Mathias	115

Authors are encouraged to submit article in MS Word (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com Please visit journal's webpage with preparation instructions: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm

Sensors & Transducers

ISSN 1726-5479 © 2009 by IFSA http://www.sensorsportal.com

The Effect on Pressure Drop across Control Valve for Two Phase Flow (Air-Water)

Arivazhagan M., Krishna Karthik K., *Sundaram S.

Department of Chemical Engineering, National Institute of Technology, Tiruchirapalli-620015, India *Department of Electronics and Instrumentation, SASTRA University, Thanjavur, India Tel.: +91431-2503111, +91-9487412478

E-mail: ariya@nitt.edu

Received: 22 October 2008 /Accepted: 24 March 2009 /Published: 31 March 2009

Abstract: Two-phase flow of water-air mixture through a pneumatic control valve for varying openings and varying ratios of flow rates was studied. The pressure drop increased with air-water ratio and the degree of variation depended on the valve opening. The friction factor decreases with Reynolds number and was also a function of valve opening. Two phase multiplier was correlated to Lockhart-Martinelli parameter and was decreasing as found in literature. Valve characteristics in terms of lift and fraction of maximum flow with quality as parameter showed that air water ratio drastically changed the characteristics. *Copyright* © 2009 IFSA.

Keywords: Control valve, Lockhart-martenelli parameter, Air-water system, Quality

1. Introduction

Two phase flow is an important area applicable to petrochemical and allied industries. Simultaneous gas and liquid flow occurs in many types of industrial equipments, such as high pressure boilers, condensers, thermal hydraulic circuits of nuclear power stations, refrigeration equipment, evaporators and many other parts of chemical and process plants. Fundamental research in multiphase flows has been mainly directed towards the gas-liquid studies at low pressure.

The dispersions of the two phases in flow conduits depend on the flow rate of each phase, the flow properties and the geometry. The particular way the two phases are dispersed is termed the flow pattern or flow regime varies from one flow to another. These variations often make the two-phase flow study, such as pressure drop and heat transfer characteristics difficult to obtain and in most cases

are not as reliable as for single-phase. However, the design of many an industrial component necessitates the reasonable estimation of theses two-phase parameters. Valve characteristics for two phase flow have not received any attention because of its complexity.

Lockhart and Martinelli [3] made the first detailed analysis in 1949 (Lockhart, 1949). Awwad. A, R. C. Xim, Z. F. Dong. et al. [5], Govier and Omer [10], were successors in this field. They concentrated on developing the flow pattern model for horizontal, inclined and vertical pipes. They have considered the following parameters:

- a) The operational variables (volumetric flow rate)
- b) Physical properties of the fluids (density and viscosity)
- c) Geometric variables of the system (diameter and length of the pipe).

Rani Hemamalini and Sundaram [1] studied experimentally the effect on pressure drop across horizontal pipe and control valve for air/water two-phase flow.

2. Experimental Procedure and Set Up

Fig. 1 shows the experimental set-up. A control valve is used as a test section. A calming section of 50 cm is provided to nullify the end effects developed during the experiment. The liquid is metered through Krone-Marshall magnetic flow meter (C). Purified air from an Ingersol Rand compressor through a 0 to $2.027*10^5$ Pa pressure regulators is metered through a non-return valve (H) using a PLACKA Rotameter. The pressure drop across the valve is measured with Honeywell differential pressure transducer (DPT). An electro pneumatic converter (E) is used to actuate the normally open pneumatic control valve.

Fig. 1. Experimental set-up of Coil in Series with Control Valve.

A	Pump	F	Gas vent
В	Storage Tank (Liquid)	G	Control valve (1/2" equal percentage)
C	Magnetic flow meter	Н	Non-Return valve
D1	Rotameter (air)	K	Compressor
D_2	Rotameter (Liquid)		•

E I/P converter

Experiments were carried out with pure liquid and mixture of air and liquid with valve openings of 25, 50, 75, and 100 percent. The pressure was measured for different ratios. The liquid and air ratio varied from 50-150 LPH and 25-75 LPH respectively.

2.1. Single Phase Flow (Liquid Flow)

The friction factor for valve section is estimated from the measured pressure drop and corresponding flow velocity, using equations (1), (2) and (3).

$$NRe = \frac{\rho_1 V_1 D}{\mu_1} \tag{1}$$

$$f_{\rm V} = \frac{\Delta P_{\rm V}}{2\rho_1 V_1^2} (D_{\rm e}) \tag{2}$$

$$f = aNRe^{m} \tag{3}$$

where, the equivalent diameter, De for valve is determined based on the geometry of the control valve.

2.2. Definition of Equivalent Diameter for Valve Opening

The valve assembly was dismantled and the orifice opening and trim configuration was measured for different lift positions. The maximum valve opening was 0.125 m. Fig. 2 shows the details of stem contour and opening. For the valve section based on valve opening, an equivalent diameter was determined defined by Eq. (3).

Fig. 2. (a) Definition of Equivalent Diameter, (b) Flow through Valve.

Equivalent diameter de = 4 * hydraulic radius, where

$$D_{e} = 4 \left(\frac{\frac{\pi}{4} (0.0125^{2} - D_{o}^{2})}{\pi (0.0125 + D_{o})} \right)$$

$$D_{e} = 0.0125 - D_{o}$$
(4)

The value of equivalent diameter for various lifts is given in Table 1. Fig. 3 shows the graph for friction factor vs Reynolds number for water in the valve section for different valve openings. The data was fitted to equation (3)

$$f = \alpha N R e^m$$

Table 1. Equivalent Diameters for valve opening.

		Equivalent Diameter (D_e) in m
100	0	0.0125
75	0.0094	0.0031
50	0.0063	0.0063
25	0.0031	0.0094

Fig. 3. Friction Factor vs Reynolds Number for Water in the Valve Section.

The values of constants of Eq. (3) a and m for pure liquid and valve section are given in Table 2. A single graph could not be obtained due to valve geometry.

Table 2. Constants for Eq. (3) for various valves opening for valve section.

Constants	Valve opening (%)			
Constants	25	50	75	100
а	16327	105826	12629	13169
m	-1.152	-1.3266	-1.3517	-1.0686

2.3. Two-Phase Flow (Pressure Drop vs Q_l/Q_a)

The measured pressure drop across control valve for different liquid to air ratios (Q_1/Q_a) are plotted and shown in Fig. 4. It is observed that maximum pressure drop is 33.3 KPa for 25 % valve opening and decreases as the valve opening increases.

Fig. 4. Effect of Pressure Drop in Valve section for Different Valve Opening for Water at Air Flow Rate of 75 lph.

2.4. Pressure Drop vs Quality (X)

The term quality X defines the fraction of dispersed phase (flow rate of air/ (flow rate of liquid+ flow rate of air)) in two-phase flow and can estimated using Eq. (5).

$$X = \frac{1}{\left(1 + \frac{\rho_1}{\rho_2} \frac{Q_1}{Q_2}\right)} \tag{5}$$

The experimentally measured pressure drop variation with quality, X is shown in Fig. 5. The pressure drop varies linearly with flow rate as seen in Fig. 5.

The maximum pressure drop across valve is 28.5 KPa at constant quality of 0.0012. The variation of pressure drop with quality, X is in agreement with literature [2].

Fig. 5. Two phase Pressure Drop Vs Quality for Valve Section (Water).

2.5. Two-Phase Multiplier vs Quality X

Another relationship useful in two-phase studies is the two-phase multiplier given by Eq. (6) and (7)

$$\phi_{\alpha} = \frac{(dp/dz)_{\text{TPI}}}{(dp/dz)_{\alpha}} \tag{6}$$

$$\phi_1 = \frac{(dp/dz)_{\text{TPf}}}{(dp/dz)_4} \tag{7}$$

The two-phase multiplier is defined as the ratio of pressure drop for two-phase flow to single phase for gas (Φ_a) or liquid (Φ_l) as given by the Eq. (6) & (7). The pressure drop for single phase in the denominator of Eq. (6) & (7) is given from Eq. (8) and Eq. (9) from pure fluid friction factors.

$$\left(\frac{dp}{dz}\right)_1 = 2f_1 \rho_1 V_1^2 / D \tag{8}$$

$$\left(\frac{dp}{dz}\right)_a = 2f_a \rho_a V_a^2 / D \tag{9}$$

The Φ_1 obtained experimentally is plotted against quality and is shown in Fig. 6. The two-phase multiplier increases with quality in agreement with literature [3].

Fig. 6. Two-phase multiplier vs quality for valve section.

2.6. Relation Between Two Phase Multiplier and Lockhart-Martinelli (L-M) Parameter

A method of predicting pressure drop in two-phase flow from the studies on one of the single phase has been suggested [4] in terms of L–M parameter X_{tt} defined by Eqs. (10) and (11).

$$\chi_u^2 = \left[\frac{(1 - X)}{X} \right]^{2 - m} \left(\frac{\rho_\alpha}{\rho_1} \right) \left(\frac{\mu_1}{\mu_\alpha} \right)^m \tag{10}$$

where "m" is the value obtained for single phase flow from the relation Eq. (3). The two-phase multiplier Φ_1 is related to L–M parameters by the Eq. (9):

$$\phi_1^2 = \frac{\Delta P_{1Pf}}{\Delta P_1} = 1 + \frac{C}{\chi_u} + \frac{1}{\chi_u^2} \tag{11}$$

Fig. 7 presents Φ_l vs X_{tt} graphically for valve section. The two-phase multiplier is observed to decrease with increase in Lockart–Maritinelli parameter (X_{tt}) . The relationship given by Eq. (9) is fitted by regression analysis and the value of C is estimated and is given in Table 3.

Thus the two-phase multiplier can be used to predict the pressure drop across control valve section for different gas-liquid ratios studied.

Table 3.

Valve opening (%)	Valve section
25	248
50	425
75	414
100	398

Fig. 7. Variation of two-phase multiplier vs L–M parameter for valve section.

2.7. Valve Characteristics

The installed characteristics of the valve are plots fraction of maximum flow rate vs the fraction of valve opening at different pressure drop across the control valve. These plots are useful to determine the suitability of the valve in process design. Fig. (8) shows the characteristics for constant quality of 0.001 and Fig. (9) at constant pressure drop of 1 KPa. It is seen that for a quality of 0.001 the

maximum permissible pressure drop is 3.0 KPa and for a constant pressure drop of 1KPa the maximum permissible quality is 0.02 for full range of operation.

Fig. 8. Valve characteristics at constant quality of 0.001.

Fig. 9. Valve characteristics at constant pressure drop of 1000Pa.

3. Conclusions

Two-phase flow through control valve has been studied for different quality. Pressure drop has been related to quality. Two-phase multiplier and L-M parameter correlation is found to be in good agreement with the literature. The installed characteristics of the valve are represented for different quality and pressure drop. The study has been specific to the experimental set-up used in this work. The correlations especially between two-phase multiplier based on liquid phase and L-M parameter will be useful in design of control valves for two-phase flow. The study enables one to predict the required pressure drop information from the data for single-phase flow through valve. The valve used being an equal percentage valve; the correlation can be extended to other types of valves such as linear and quick opening by appropriate definition of equivalent diameter for valve opening. The valve characteristics in terms of pressure drop and quality clearly indicates the maximum value, which the specific control valve can accommodate for proper utilization of the valve. These correlations can be tried for other types and size of valves also and their useful range be established.

Nomenclature

C - Cfactor in Eq. (11)

D - diameter of pipe, m

De - equivalent diameter of valve opening, m

Do - orifice diameter, m

F - friction factor

L - valve stem position (or lift) m exponent

Qa - air flow rate, m³/s

Ql - liquid flow rate, m³/s

NRe - Reynolds number

V - velocity of flow, m/s

X – quality

Subscripts

a - air

1 - liquid, water

v - valve section

TPf - two-phase flow

Greek symbols

ρ - density of liquid/gas, kg/m³

μ - dynamic viscosity liquid/gas, Ns/m²

 ΔP - pressure drop, Pa

 χ^2_{tt} - Lockhart–Martinelli (L–M) parameter

 Φ_{l} - two-phase multiplier based on pure liquids Eqs.

(7a) and (12)

 Φ_a - two-phase multiplier based on pure gases Eq. (7b)

References

- [1]. Rani Hemamalini, P. Partheeban, J. Sarat Chandrababu, S. Sundaram, The effect on pressure drop across horizontal pipe and control valve for air/water two phase flow, *The International Journal of Heat and Mass Transfer*, 48, 2005, pp. 2911-2921.
- [2]. M. Salcudean, J. H. Chun, D. C. Groeneveld, Effect of flowobstructions on the flow pattern transitions in horizontaltwo-phase flow, *Int. J. Multiphase Flow*, 9, 1, 1983, pp. 87–90.
- [3]. R. J. Lockhart, R. C. Martinelli, Proposed correlation of data for isothermal two-phase, two-component flow inpipes, *Chem. Eng. Prog.*, 45, 1, 1949, pp. 39–48.
- [4]. Agrawal, S. S., Gregory, G. A and Govier, G. W., *The Canadian Journal of chemical Engg*, Vol. 51, 1973, pp. 280-286.
- [5]. Awwad. A,. R. C. Xim, Z. F. Dong, M. A. Ebadiam and H. M. Soliman, Flow patterns and pressure drop in Air/water two-phase flow in horizontal helicoidal pipes, Transaction of the ASME, *Journal of Fluids Engineering*, Vol. 117, 1995, pp. 720-726.
- [6]. Butterworth D. and G. F. Hewitt, Two-Phase Flow and Heat Transfer, Oxford University Press, 1977.
- [7]. Clement Kleinstreuer, Two-phase Flow-Theory and Applications, Taylor Francis, 2003.
- [8]. Christopher E. Brennen, Fundamental of Multiphase Flows, Cambridge University Press, 2005.
- [9]. Driskell, L. Control valve Selection and Sizing, ISA publishing, Research Triangle Park.
- [10]. Govier, G. W. and M. M. Omer, The Horizontal Pipeline Flow of Air-Water Mixtures, *Canadian Journal of Chemical Engineering*, Vol. 40, 1992, pp. 93-104.
- [11]. Graham B. Wallis, One –Dimensional Two-phase Flow, McGraw-Hill, 1969.
- [12]. Hans D. Baumann, Control Valve Primer A User's Guide, *Instrument Society of America*, 1998.
- [13].J. Hart, P. J. Hamersma and J. M. H. Fortuin. Frictional Pressure Drop for Gas-Liquid Pipe Flow through Helically Coiled Tubes, Multi-phase Flow, in *Proceedings of the 4th International Conference, BHRA*, 1989, pp. 185-198.
- [14]. Hutchison. (ED), ISA Handbook of Control Valves, 2 nd edition, *Instruments Society of America, Research Triangle Park*, 1976.
- [15].ISA, Standards and Practices for Instrumentation and Control; 11th Edition, *The Instrument Society of America, Research Triangle Park*, 1992.
- [16].Jean. J. Ginoux, Two-phase Flows and Heat Transfer, A Von Karman Institute Book, *Hemisphere Publishing Corporation*, 1978.

Smart Sensor Systems '09

April 20 - April 23, 2009

General information about the course

Lectures are given by top experts from universities and industries. The prerequisite for the course is a basic knowledge of electrical circuits and systems. Course will be taught in English. Each attendee will receive a certificate of attendance at the course.

Short description

Recent developments in the field of smart sensor systems are reviewed. After a general overview systems are discussed, concerning: sensor principles, tandem transducers, smart analog interfaces, modifiers, A/D conversion, busses and digital lines, DSPs and micro controllers. A systematic approach towards the design of smart sensor systems is presented. The lectures include case studies and hands-on demonstrations.

This course is organized by:

G.C.M. Meijer and J.H. Huijsing Delft Institute of Microsystems and Nanoelectronics Delft University of Technology Delft, The Netherlands

Secretariat:

Joyce Siemers
Delft University of Technology, Faculty of EEMCS
Laboratory for Electronic Instrumentation
Mekelweg 4, room HB13.320
2628 CD Delft, The Netherlands
Phone: +31152785745
Fax: +31152785755
ei-ewi@tudelft.nl
http://ei.ewi.tudelft.nl

Sensors & Transducers Journal

Guide for Contributors

Aims and Scope

Sensors & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and application specific papers, short notes, letters to Editor and sensors related books reviews as well as academic, practical and commercial information of interest to its readership. Because it is an open access, peer review international journal, papers rapidly published in Sensors & Transducers Journal will receive a very high publicity. The journal is published monthly as twelve issues per annual by International Frequency Association (IFSA). In additional, some special sponsored and conference issues published annually.

Topics Covered

Contributions are invited on all aspects of research, development and application of the science and technology of sensors, transducers and sensor instrumentations. Topics include, but are not restricted to:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- · Sensors interfaces, buses and networks;
- Signal processing;
- Frequency (period, duty-cycle)-to-digital converters, ADC;
- · Technologies and materials;
- Nanosensors:
- · Microsystems;
- Applications.

Submission of papers

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 6-14 pages article (including abstract, illustrations (color or grayscale), photos and references) in both: MS Word (doc) and Acrobat (pdf) formats. Detailed preparation instructions, paper example and template of manuscript are available from the journal's webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors must follow the instructions strictly when submitting their manuscripts.

Advertising Information

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit: http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2008.pdf

'Written by an internationallyrecognized team of experts,
this book reviews recent developments in the field of
smart sensors systems, providing complete coverage
of all important systems aspects. It takes a multidisciplinary approach to the understanding, design and use of
smart semsor systems, their
building blocks and methods
of signal processing.'

Order online:

http://www.sensorsportal.com/HTML/BOOKSTORE/Smart_Sensor_Systems.htm

www.sensorsportal.com