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Abstract: This paper presents a dynamic model of a rotating beam with a tip mass undergoing large 
angle, high speed maneuvering. This type of model may also be useful in modeling, analysis and 
development of various inertial sensors and transducers with similar operating principles. With the 
consideration of the second-order term of the coupling deformation field, the complete first-order 
approximated model (CFOAM) of a flexible spacecraft system is developed by using assumed mode 
method (AMM) and Lagrangian principle. A first-order approximated model (FOAM) is obtained by 
neglecting the high order terms of the generalized coordinates in CFOAM. A lower order simplified 
first-order approximated model (SFOAM) is derived by deleting the terms related to the axial 
deformation. Numerical simulations and theoretical analysis show that: (i) the second-order term has a 
significant effect on the dynamic characteristics of the system and the dynamic stiffening is accounted 
for, while the traditional linear approximated model (TLAM) presents invalid simulation results; (ii) the 
end mass has a ‘stiffening’ effect on the flexible system in FOAM, but a ‘softening’ effect in TLAM; and 
(iii) the SFOAM describes the dynamic behavior well and can be used for controller design.  
Copyright © 2009 IFSA. 
 
Keywords: Flexible structure, Dynamic stiffening, Assumed mode method, Flexible beam 
 
 
 
1. Introduction 
 
Rotating flexible beams are used to model light robot arms, elastic linkages, helicopter rotors, satellite 
solar arrays, and like systems. Modeling and control of systems involving interconnected rigid structures 
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and flexible appendages is a difficult task to accomplish, as most of these systems generally involve 
complex dynamics characterized by nonlinearities and strong coupling between flexible and rigid 
modes. Moreover, modern engineering technology is leading to ever more demanding performance 
criteria, such as high rotational speeds and large angular maneuvering, increasing precision and pointing 
accuracy. These criteria have posed serious difficulties for all currently advocated control design 
methodologies. Proper dynamic modeling of the system is a foundation for further research, such as 
analysis of the dynamic characteristics and various controller designs. 
 
The hybrid coordinate approach is currently the most widely used method, which describes the 
deformation field of flexible and rigid bodies separately. Mechanical systems undergoing high–speed 
rotation can produce dynamic stiffening [1, 2] due to the coupling between rigid motion and elastic 
deflection, and hence traditional dynamic analysis techniques are hardly applicable. The deformation 
field, commonly used in structural dynamics, is adopted in order to calculate the kinematics of flexible 
structures in the system. Therefore, modal characteristic changes due to high rotational speeds are not 
included in the traditional dynamic model [3]. 
 
In most cases, problems arise not because of a lack of available analytical/numerical design procedures, 
but because of our failure to recognize and appreciate the mechanism of dynamic stiffening. Unlike the 
research reported in [4,5], where the attempt was to “capture” the dynamic stiffening terms, Hong et al 
[6-8]  studied the mechanism of dynamic stiffening, and concluded that the coupling deformation field 
can explain this phenomenon. Researches [7–10] indicated that the coupling term not included in 
traditional linear deformation field can have significant effect on the dynamic characteristics of the 
multibody system when it undergoes large rigid–body motion. The work done by Yang et al [7] 
investigated a hub–beam system by using finite element method, and pointed out that the traditional 
hybrid coordinate approach may lead to erroneous results in some high–speed systems. In Ref. [9], 
Kane’s methods and the assumed mode method (AMM) were employed to investigate rigid-flexible 
dynamics of a spacecraft with solar panels. In this paper, we developed the complete first–order 
approximated model (CFOAM) of a hub–beam system by using the AMM and Lagrangian principle. 
The corresponding dynamic model of the tip mass is developed in a consistent manner. 
 
This paper is organized as follows. Section 2 describes the flexible hub–beam system and defines the 
various symbols used. In section 3, the dynamic equations of the flexible system are developed, such as 
CFOAM, FOAM and SFOAM. In section 4, numerical simulations and comparisons with the traditional 
linear approximated model (TLAM) are presented to demonstrate the validity of the developed model 
(CFOAM). Furthermore, the effect of the tip mass on the dynamic characteristics of the hub–beam 
system is also discussed in the section. The paper concludes with a discussion provided in section 5. 
 
 
2. System Description 
 
The system shown in Fig. 1 consists of a cantilever beam B built into a rigid body H. The 
coordinates XY and xy in the figure are defined as the inertial frame and the reference frame, 
respectively. puv is denoted as the flexible deformation vector at point P  with respect to the xy  frame, 
and Ar

v  is the radius vector of point A  on the hub. θ  is considered as rigid body coordinate. After 
deformation, point 0P  moves to point P . 
 
The beam is characterized by a natural length L , material properties E , ρ , and cross-sectional properties 
A , I , defined as follows. E  and ρ  are the modulus of elasticity, and the mass per unit volume of the 
beam, respectively. The area of the cross section is denoted by A , and the beam area moment of inertia is 
denoted by I .  
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Fig. 1. Beam attached to a moving rigid hub. 
 
 
3. Equations of Motion 
 
As shown in Fig. 1, the position vector from O  to P  in the XY  frame can be expressed as: 
 
 0p A pr r r u= + +v v v v , (1)
 
where Ar OA=

uuuvv , 00r AP=
uuuvv , and 0pu P P=

uuuvv . The coordinates of Ar
v  and 0r

v  in the OXY  frame are represented by 

Ar  and 0r , respectively. 
 
As shown in Fig. 2, the coordinate of the deformation vector puv  can be represented as: 
 
 1 2( ) ( )T T

p cu v w w w= = +u , (2)
 
where u and v  are the deformation quantities of the point 0P  in the x and y directions in xy  frame, 
respectively; 1w  represents the pure axial deformation, and 2w  represents the transverse deformation 
along the y–axis. cw  is the deformation associated with the foreshortening quantity due to 2w , and is 
represented as [7, 8]: 
 
 2

2
0

1 d
2

x

c
w

w x
x

∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠∫  (3)

 
The coordinate of prv in equation (1) may be written in the XY  frame as 
 
 0 0( )p A p A pr= + + = +eQ Q( + )r r r u r u , (4)
 
where 0 ( 0)Tx=r , ( )T

p u v=u , (1 0)T=e , and (cos sin )T
A Ar θ θ=r . As shown in Fig. 2, the variable x  is 

the coordinate of point 0P  in the xy  frame, and the parameter Q  is the rotational transformation matrix 
given by: 
 
 cos sin

sin cos
θ θ
θ θ

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Q , (5)

 
where θ  is the angular displacement of the hub. 
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Fig. 2. Description of the beam deformation. 
 
 
The first-order derivative of Pr  may be expressed as 
 
 0P A p pr θ= +e && &r r u uQ ( + ) + QI  (6)
 
where 
 
 1

2

0 1
,

1 0
c

p

w w
w

=
−− ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

I
& &

&
&

u . (7)

 
From Eq. (6), we can derive 
 
 ( ){ } ( ) ( ) ( ){ }2 22 2 2

1 2 1 2 1 2 12T
P P A c c A c cr w w x w w w w r w w x w w w vθ θ= + + + + + + + + + + + − +& && & & & & & & &r r  (8)

 
The kinetic energy of the hub–beam system is written as 
 
 2

0

1 1 1
2 2 2

L T T
h b t h P P m mT T T T J dxθ= + + = + +∫& & & & &tr r m r r , (9)

 
where hT  , bT  and tT   are the kinetic energy of the hub, beam and tip mass, respectively. hJ  is the 
rotational inertia of the hub. tm  is the weight of the tip mass, mr  is the coordinate of the position vector 
from O  to the tip mass. 
 
By using Euler–Bernoulli theory, the potential energy is given by 
 
 22 2

1 2
20 0

1 1
2 2

L Lw w
U EA dx EI dx

x x
⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫  (10)

 
where E  is Young’s modulus, A  is the cross–sectional area and I  is the area moment of inertia. The 
AMM is used to discretize the elastic beam, then the deformations u  and v  can be represented as:  
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

1 1

, , ,
n n

i i i i
i i

u x t x t v x t x t
= =

= =∑ ∑q qf f , (11)

 

P0

P

v 

u
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where ( ) ( )1
i xf  and ( ) ( )2

i xf  are the admissible functions, ( ) ( )1
i tq  and ( ) ( )2

i tq  are the mode generalized 
coordinates, and n  refers to the number of included modes. In subsequent derivations, ( )1 xf , ( )2 xf , 

( )1 tq  and ( )2 tq  are adopted to represent the vectors of ( ) ( )1
i xf , ( ) ( )2

i xf , ( ) ( )1
i tq and ( ) ( )2

i tq  respectively. 
From Eq. (11), Eq. (8) can be rewritten as 
 
 ( ) ( ) ( ){ ( )

( ){ } ( )

222
1 1 2 2 1 1 1 1 2 2 2 2 1 1 2 2 2 2

2
o 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 2 2

12
4

2 2

T T T T T T T T
p p A A A

T T T T T T T T T T T T T

r x r x r x

r x

θ

θ

⎫= + + + − + + + − + ⎬
⎭

+ + + − + + + − +

&& &

& & & & & & & & & & & &

r r S S S

S S S

f f f f f f

f f f f f f f f f f f

q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q
, (12)

 

where 2
1 1 2 2

Tθ& q q Sqf , 2 2 2 22 Tθ& &q Sq qf , 1 1 2 22 T T T& &q q qf S , ( )2
2 2
T &q Sq  and ( )22

2 2
1
4

Tθ& q Sq  are high order terms related to 

the generalized coordinates. 
 
 
3.1. Equations of Motion at the Element Level 
 
To derive the equations of motion in a more compact form, the following element coefficients and 
matrices are introduced: 
 ( )2

0

L

b AJ A r x dxρ= +∫  (13)
 
 ( ) ( )1 1

1 0

T
L x x

EA dx
x x

⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫K

f f  (14)

 
 ( ) ( )2 2

2 2
2 2 20

T
L x x

EI dx
x x

⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫K

f f  (15)

 
 

0
, 1, 2

L T
iA dx iρ= =∫i iM f f  (16)

 
 ( )

0
1,2

L

i A iA r x dx iρ= + =∫V f  (17)
 
 ( ) ( )

0

L

AA r x x dxρ= +∫D S  (18)
 
 

1 20

L TA dxρ= ∫R f f , (19)
 
where bJ  is the rotational inertia of the beam about the hub center, matrices 1

n nR ×∈K  and 2
n nR ×∈K  are 

the conventional stiffness matrices, n nR ×∈iM , 1, 2i =  are generalized elastic mass matrices, matrix D  
results from the second order term of the coupling deformation field (3), matrix R  results from the 
gyroscopic effects, and ( )xS results from cw  and is represented as: 
 
 

( ) ( ) ( )2 2

0
d

T
x

x
ξ ξ

ξ
ξ ξ

∂ ∂
=

∂ ∂∫S
f f  (20)

 
It is important to note that matrix D  is non-negative definite because ( )xS  is a non-negative definite 
matrix. 
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Using AMM with n  assumed modes, Eqs. (9) and (10) can be rewritten as: 
 
 ( )

( ){ ( ) }

2
1 1 1 1 1 2 2 2 2 2 2 2 1 2 2 1 1 1 1

2 22 2
2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 20

1 1 1 1 1 1
2 2 2 2 2 2

1 1 2 2
2 4

T T T T T T T
h b

LT T T T T T

T J J

A dx1

θ θ

ρ θ θ θ

⎛ ⎞= + + + + − + + − +⎜ ⎟
⎝ ⎠

+ + − + + −∫

& & & & & & &

& & && & & & & &S S S S Sf f f

V q q M q q M q q Dq V q q R q q R q q M q

q M q q q q q q q q q q q q q q
 (21)

 
 

1 1 1 2 2 2
1 1
2 2

T TU = +q K q q K q  (22)

 
The governing equations of motion can now be obtained through the application of the Lagrangian 
principle 
 
 

1,2, , 1d T T U i n
dt
⎛ ⎞∂ ∂ ∂

− + = = +⎜ ⎟∂ ∂ ∂⎝ ⎠
L

& i
i i i

Q
h h h

, (23)

 
where iη  are the system generalized coordinates, and iQ  the non-conservative generalized forces due to 
environmental effects and actuators.  
 
By substituting Eqs. (21) and (22) into Eq.(23), the equations of motion of the flexible system at the 
element level in compact form can be written as: 
 
 

1 2

1 1 1 1 2 1 1 1

2 2 2 2 1 2 2 2

1 11

2 22

0 0
2 0 0

0 0

q q

q q q q q q q q

q q q q q q q q

M Qθθ θ θ θ

θ

θ

θ θ τθ
θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&&&

& &&&

&&&

M M

M M G q K q Qq
q qqM M G K Q

0 0 0 0
0 0 0 0

00 0 0

, (24)

  
where 1Rθθ ∈M  is the rotary inertia of the system, 

1 1

n n
q q R ×∈M  and 

2 2

n n
q q R ×∈M  are the beam generalized 

elastic mass matrices, 
1

1 n
q Rθ

×∈M , 
2

1 n
q Rθ

×∈M , 
1

1n
q Rθ

×∈M  and 
2

1n
q Rθ

×∈M represent the nonlinear inertia 
coupling between the motion of the reference frame and the elastic deformations, 

1 1

n n
q q R ×∈K  and 

2 2

n n
q q R ×∈K  are generalized elastic stiffness matrices that are shown to be affected by both the motion of 

the reference frame and the elastic deformations, Qθ  represents inertia forces, and τ is the rotational 
external torque. The parameters in Eq. (24) are given as follows: 
 
 1 1 1 2 2 2 11 1 2 22T T T

h bM J J Mθθ θθ= + + + + − + ∆q M q q M q V q q D q  (25)
 
 

1 1 2
T

q qθ θ= = −M M R q  (26)
 
 

2 2 212 1
T T T

q q qθ θ θ= = + + ∆M M V q R M  (27)
 
 

2 2 212 1
T T T

q q qθ θ θ= = + + ∆M M V q R M  (28)
 
 

1 2 2 1

T
q q q q= − = −G G R  (29)

 
 

1 1

2
1 1q q θ= − &K K M  (30)

 
 

2 2

2 2
2 2q q θ θ= − +& &K K M D  (31)
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 ( )1 1 1 2 2 2 1 1 2 22 T T T
θ θθ ⎡ ⎤= − + + − + ∆⎣ ⎦

& & & & &q M q q M q V q q D qQ Q  (32)
 
 

1 1

2
1
T

q qθ= + ∆&Q V Q  (33)
 
 

2 2q q= ∆Q Q , (34)
 
where 
 
 ( )2

2 2 1 1 2 20

1 2
2

L T TM A dxθθ ρ ⎧ ⎫∆ = −⎨ ⎬
⎩ ⎭∫ q Sq q q qf S  (35)

 
 

2 2 2 20
4

L

q A dxθ ρ∆ = ∫M q Sqf  (36)
 
 ( )( ){ }1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 20

2 2
L T T T T T T TA dxθ ρ θ θ θ∆ = − + − + + +∫ & & & && & & & && & &qf f f f fq q Sq q Sq q Sq q q Sq Sq q q Sq q q Sq qQ  (37)
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2
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A

dx

1 1

1

ρ θ θ θ θ

θ θ

∆ = − − + +
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∫ & & & && & && & & & & & &

& &&& & & & & & &

qQ + + S

+ S S +

f f f f f f

f f

q Sq q Sq q Sq q Sq q Sq Sq q Sq q q

q q q q Sq Sq q Sq q Sq Sq q Sq q Sq Sq
 (39)

 
Equations (35)-(39) are derived from the high order terms in Eq. (12).  
 
In Eq. (24), the nonlinear coupling between the rigid–body motion and the elastic deformations can be 
easily seen. The underlined terms in Eqs. (25), (31) and (32) result from the coupling deformation field. 
The newly established Eqs. (24)-(34) are called the complete first-order approximate model(CFOAM), 
while the CFOAM without Eqs.(35)-(39) are called the first-order approximate model (FOAM). The 
FOAM without the underlined terms are called traditional linear approximate model (TLAM). A 
simplified first-order approximate model (SFOAM) of the hub-beam system can be derived from FOAM 
by deleting the elements related to Qθ , 1q and 1&q :  
 
 

2

2 22 2 2 22

0q

q qq q q

Mθθ θ

θ

θ τθ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

&&

&&

M
K qM M q

0
0 0

, (40)

 
where Mθθ ,

2qθM ,
2q θM ,

2 2q qM  and 
2 2q qK  can also be obtained by deleting the elements related to 1q  and 1&q  

in (25), (27), (28), (31) and(32). It is noted that SFOAM can be used for controller design. 
 
 
3.2. Tip Mass Dynamics  
 
The tip mass, as shown in Fig. 1, is located at a distance l  along the undeformed beam from point A. It is 
considered to have a mass tm . The position vector of the tip mass with respect to the inertial frame XY can 
be represented as 
 
 ( )m A t t= + +Qr r r u , (41)
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where ( 0)T
t l=r  is the position vector of the tip mass in the reference frame xy  in the undeformed 

configuration, and tu  is the elastic displacement vector of the point on the beam to which the tip mass is 
attached. 
 
The contribution of the tip mass to FOAM of the multibody system can also be included by applying the 
Lagrangian principle. The equations can be represented by the following matrix form: 
 
 

1 2

1 1 1 1 2 1 1 1

2 2 2 2 1 2 2

1 11

2 22

0 0
2

l l l
q q

l
q q q q q q q q
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&&&

& &&&

&&&

l

l l l l

l l l l

M M

M M G q K q Qq
q qqM M G K

0 0 0 0
0 0 0 0 0

0 0 0 0 0 0

, (42)

 
where the coefficients and matrices are shown in the appendix. 
 
 
3.3. Equations of Motion of the Whole System 
 
The FOAM of the whole system can be obtained from Eqs. (24) and (42) directly by adding the 
corresponding entries of the generalized matrices. Two different models are developed in order to 
examine the effect of the second order term. The established equations with and without the underlined 
terms are called FOAM and TLAM, respectively. 
 
 
4. Simulations and Results 
 
The physical parameters of the flexible hub-beam system are shown in Table 1. The payload is 
represented by a point mass tm  at the free end of the beam. The number of included modes n  is 5. 
 
 

Table 1. Physical parameters. 
 

Property Symbol Value 
Beam length L  8m 
Mass per unit volume ρ  2.7667×103 kg/m3 
Cross-Section A  7.2968×10-5 m2 
Young’s modulus E  6.8952×1010 N/m2 
Beam area moment of inertia I  8.2189×10-9m4 
Hub moment of inertia hJ  200 kgm2 
Hub radius r  0.5 m 
Tip mass tm  0.1 kg 

 
 
The response of the flexible motion is simulated by assuming that the slewing motion follows a 
prescribed trajectory, and the maneuver profile [2] is given by 
 
 2sin , 0

2

,

f f
f

f f

f f

w w
t t t

t t

w t t

π
πθ

⎧ ⎛ ⎞
− ≤ ≤⎪ ⎜ ⎟⎪ ⎜ ⎟= ⎨ ⎝ ⎠

⎪ >⎪⎩

&  (43)

 
where fw  and ft  represent the velocity of the hub at the end of the maneuver, and the time to reach the 
maximum velocity, respectively. 
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4.1. Vibration Response of CFOAM and FOAM  
 
Let us consider first CFOAM and FOAM of the hub–beam system without a tip mass. 
 
The terms (35)-(39) in CFOAM are the integrations of the generalized coordinates. Thus, CFOAM is not 
only complicated in presentation, but also difficult in symbolic computation and numerical simulation. 
Fig. 3 shows the simulation results with the neglected terms when fw  is 3 rad/s. For simplicity, the first 
mode is taken into account. In fact, it dominates the transverse response of the beam (see Fig. 6). We can 
see from Fig. 3 that these terms have small amplitude and tend to reach zero after 30 s. 
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Fig. 3. Response with the neglected terms when fw =3 rad/s. 
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Fig. 4 shows that the displacement of CFOAM and FOAM is exactly the same. This confirms that the 
simplification is valid and FOAM can be used to investigate the dynamic characteristics of the flexible 
multibody system. 
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Fig. 4. Tip displacement of CFOAM and FOAM when fw =3 rad/s. 
 

 
4.2. Vibration Response of FOAM and TLAM 
 
Fig. 5 shows the simulation results of TLAM and FOAM for comparison. It can be seen that the 
vibration response of the flexible beam diverges when the angular velocity is greater than 3rad/s. It 
should be noted that the resulting tip displacement of TLAM has exceeded the assumption of small 
deformations. When the angular velocity is smaller than 3rad/s but close to the critical value, e.g., 
2.8rad/s, the maximum tip deflection of TLAM is much larger than that of FOAM, which are 
approximately 0.49m and 0.22m, respectively. Moreover, the residual vibration amplitude of TLAM is 
approximately 100 times larger than that of FOAM. It can be concluded therefore that TLAM is invalid 
for describing the deformation of multibody systems in high–speed cases. 
 
Because the second order term in the deformation is not included, the generalized elastic stiffness matrix 
in the TLAM is expressed as

2 2

2
2 2q q θ= − &K K M . From this expression, it is seen that the stiffness matrix 

may be negative definite when the angular velocity surpasses a critical value. In fact, it can be calculated 
from Eq. (31) that the critical angular velocity is 2.91rad/s. This is the first order natural circle frequency 
of the beam according to Table 2. The frequencies evaluated with TLAM are ‘softening’ compared to the 
natural frequencies. On the other hand, the generalized elastic stiffness matrix in FOAM is expressed 
as

2 2

2 2
2 2q q θ θ= − +& &K K M D , in which the underlined term 2θ& D  is non–negative definite, and can make 

2 2q qK  definite positive. 
 
As shown in Table 2, the natural vibration frequency is larger than that evaluated with TLAM, but less 
than that evaluated with FOAM, i.e. the second order term in coupling deformation field has a 
‘stiffening’ effect on the frequencies of the multibody system in high-speed case. The difference values 
become larger when the speed increases. 
 
 

Table 2. The inertia force under different torques. 
 

Mode order 1 2 3 4 5 
Natural frequency 0.4635 2.9047 8.1332 15.9377 26.3462 
TLAM (1 rad/s) 0.4353 2.9003 8.1316 15.9369 26.3457 
FOAM (1 rad/s) 0.4714 2.9308 8.1618 15.9682 26.3776 
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(a) Transverse response of the tip of the beam. 
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(b) Axial response of the tip of the beam. 
 

Fig. 5. Beam vibration response with respect to different angular velocities. 
 
 

 
4.3. Vibration Response of FOAM and SFOAM 
 
Consider first FOAM of the hub–beam system without tip mass. For 5 /fw rad s= , and 30ft s= , the 
resulting response of the first five modes of the flexible hub–beam system is shown in Fig. 6.  
 
It can be seen that the peak response of the transverse displacement is approximately 1500 times larger 
than that of the axial displacement. As shown in Fig. 6a, the response of the first two modes dominates 
over the response of the higher modes. Thus the elements related to 1q  and 1&q  in (25) can be neglected 
for simplification. Fig. 6b clearly shows that the simulation results for the different number of modes are 
exactly the same. 
 
Next, we assume that the torque acting on the rigid hub has the following profile: 
 
 

( )
2sin , 0

0,

m f
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t t t
Tt
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πτ
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, (44)

 
where 10ft s=  is the maneuver time, and mτ  is the maximum torque. 
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(a) Response of the transverse displacement. 
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(b) Response of the axial displacement. 
 

Fig. 6. Beam vibration response to prescribed slew maneuver. 
 
 

As shown in Fig. 7, the maximum amplitude of Qθ  is 2.62 Nm, which is about 6.5 % of mτ . Table 3 
outlines the maximum amplitudes of the generated Qθ  with different ( )tτ  acting on the hub. It is clear 
that Qθ  is small and hence can be treated as a small disturbance of ( )tτ . Therefore, for simplification, it is 
not included in SFOAM. 
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Fig. 7. Response of Qθ  when mτ  is 400Nm. 
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Table 3. The first five vibration frequencies (Hz). 
 

Torque Value (Nm) 
mτ  50.0 100 200 400 

Qθ  6.24×10-3 4.61×10-2 3.72×10-2 2.62
 
 
Fig. 8 shows the simulation results of FADM and SFOAM. When the torque is small (50 Nm), as shown 
in Fig. 8 a, the simulation curves of SFADM almost coincided with that of FOAM.  But the difference 
appears when mτ  is 200 Nm. Fig. 8 b shows that the phase of the residual vibration of SFOAM is leading 
that of FOAM by 0.45 rad, but the amplitude is 24% smaller than that of the latter.  We can also see that 
the displacement of SFOAM is exactly the same (see Fig. 8 b). That is, SFOAM with the first mode 
reflects the dynamic characteristic of the hub-beam system well, and can be used for controller design. 
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(a) mτ  is 50Nm. 
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(b) mτ  is 200Nm. 
 

Fig. 8. Tip displacement of the beam when mτ  are 50Nm and 200Nm. 
 
 

4.4. Vibration Response of Hub-beam System with Tip Mass 
 
The general elastic stiffness matrix of the whole system in TLAM is 2 2

22 2 2 2 2( ) ( )T
tm l lθ θ= − −& &K K M f f , 

which shows that the positive definite property of the stiffness matrix in TLAM is determined by the 
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position tr , the angular velocity θ& and the mass tm . It is known that the positive definite property of 22K  
is determined by the sign of its eigenvalues. Fig. 9 shows this relationship. 
 
As shown in the figure, the critical velocity is 2.91 rad/s when mt is located on the hub ( 0l = ). If the 
angular velocity exceeds the critical value, the dominant eigenvalues of 22K  will be negative , which can 
explain the simulation results shown in Fig. 4 (with 3 rad/s). When the tip mass is located at the tip of the 
beam, the critical velocities are 2.60 rad/s and 1.91 rad/s for mt=0.1 kg and mt=0.5 kg, respectively. Fig. 
10 shows the transverse displacement of TLAM for the above two cases. For mt=0.5 kg, TLAM fails to 
describe the deformation of the flexible beam when the angular velocity is 2.0 rad/s. However, for the 
same angular velocity, the simulation result of TLAM is almost the same as for FOAM when mt=0. It is 
seen that the tip mass decreases the critical angular velocity. Moreover, it can be concluded that as the 
weight increases, the critical value decreases. 
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Fig. 9. The dominant eigenvalues of 22K . 
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Fig. 10. Response of TLAM system with tip mass. 
 
 

The generalized elastic stiffness matrix of the tip mass is expressed as
2 2

2
2 2( ) ( )l T

q q tm l l θ= − &K f f , which has a 
‘softening’ effect on the flexible hub–beam system. Because the second order term in coupling 
deformation is included, the generalized elastic stiffness matrix in FOAM has the term ( ) 2

t Am r L θ+ & S , 
which acts as a ‘stiffening’ effect. 
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5. Conclusions 
 
In this paper, the CFOAM, FOAM and SFOAM of a flexible hub–beam system with a tip mass have 
been presented by using AMM and Lagrangian principle. It is shown that the traditional hybrid 
co-ordinate approach cannot account for dynamic stiffening and may lead to erroneous results in some 
high-speed systems. In contrast, the models we developed in this paper can predict valid results. It was 
also shown that SFOAM model can be used for controller design. The tip mass has a ‘softening’ effect 
on the hub-beam system in TLAM, but has a ‘stiffening’ effect in FOAM. Theoretical analysis and 
simulation results show that FOAM has better adaptability than TLAM, especially in cases with high 
rotational speeds. As a future research, experimental investigations on such a system are needed. 
 
 
Appendix 
 
The coefficients and matrices in the equation of motion of the tip mass are given as follows: 
 
 ( ) ( ) ( )2

1 1 1 1 2 2 2 2 1 1 2 2( ) ( ) ( ) ( ) 2 ( )l T T T T T
t A t t t A t AM m r l m l l m l l m r L l m r Lθθ = + + + + + − +f f f f fq q q q q q Sq  (A1)

 
 ( )1 1 1 2 2( ) ( )

Tl l T
q q tm l lθ θ= = −M M qf f  (A2)

 
 ( ) ( )

2 2 2 1 1 2( ) ( ) ( )
Tl l T T

q q t A tm r L l m l lθ θ= = + +M M qf f f  (A3)
 
 

1 1 1 1( ) ( )l T
q q tm l l=M f f  (A4)

 
 

2 2 2 2( ) ( )l T
q q tm l l=M f f  (A5)

 
 ( )1 2 2 1 1 2( ) ( )

Tl l T
q q q q tm l l= − = −G G f f  (A6)

 
 

1 1

2
1 1( ) ( )l T

q q tm l l θ= − &K f f  (A7)
 
 ( )

2 2

2 2
2 2( ) ( )l T

q q t t Am l l m r Lθ θ= − + +& &K Sf f  (A8)
 
 ( ) ( )1 1 1 1 2 2 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )l T T T T T

t t t A t Am l l m l l m r L l m r Lθ θ ⎡ ⎤= − + + + − +⎣ ⎦
& & & & &f f f f fQ q q q q q q Sq  (A9)

 
 ( )

1

2
1 ( )T

q t Am r L lθ= + &lQ f  (A10)
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