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Abstract: For attitude control system, based on instruction filter back-stepping techniques, a robust fault-
tolerant control method is proposed. Firstly, attitude control system mathematical model is given, on this basis,
the attitude control system under the modeling errors caused by uncertainty, external disturbances and control
surfaces faults are considered. The fault tolerant control design involves two main units, one is auxiliary
system design, the other is controller design using the auxiliary system. Finally, the simulation results
show that the proposed method can make the tracking performance for flight control system.
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1. Introduction Because the object exists uncertainty
and disturbance, even if the diagnosis information

The flight control system failure is mainly is accurate, when designing the controller still want
composed of actuators, sensors, structural failure. In to consider the robustness and anti-interference

order to improve the safety and reliability, control problem of controller. In this paper, the robust fault-
system fault tolerant control (FTC: Fault tolerant tolerant controller design framework is shown
control) must be considered [1]. inFig. 1.
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Fig. 1. The proposed design method block diagram.
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In this paper, the proposed fault-tolerant control
method merely designs a robust fault-tolerant control.
An auxiliary system reconfiguration controller is
designed based on the auxiliary system dynamic
model. Relative to traditional method in design is
more simple and convenient.

Based on instruction filtering inversion
method [2], this paper proposes a robust fault-tolerant
control system based on instruction filtering
inversion design.

2. Control Surface Fault M odel

According to the aircraft X-33 aerodynamic
configuration, considering the specific flight
environment, a reasonable hypothesis and appropriate
axes, a smplified model can be used to design
attitude control system. Fault tolerance control law is
calculated on the original model simulation, and test
the validity of the fault-tolerant control system.

2.1. Attitude M odel Description

This paper focuses on the fault tolerant flight
control system design, only the factors of flight
movement play amajor role. It can effectively reduce
the complexity of the problem.

Therefore, the attitude angle motion equations of
the X-33 aircraft are [3, 4]
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In summary, X-33 attitude dynamic equation is
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2.2. Control Surface Damage Failure M odel

Considering the control surface damage fault, in
fact the control action uiE of each channel is[6]:

U~ =oil, o€lo; o]

_ . : (10)
O<o <10, 21 i=1---8

where o; is the damage factor. When ¢, =0; =1,

failure did not happen.
The actual control channel is

UE =[O'1U1,"',O'8U8]=EU, (11)
where = =diag[o;,--+,05] , the X-33 control surface
damage moddl is

{Xl: f.04) + 9, ()% (12)

X = f2 (%, %) + G, (%, %) ZU+d (%, X, t)
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3. Active Fault Tolerant Control Design

In view of the mentioned in the second part, this
section presents the proposed robust fault-tolerant
control design.

Itisshownin Fig. 2.

Dynamic eguation and attitude angle loop
equation using observer design an instruction
filtering inversion control method, fault and
compound interference implied in the observer.
Dynamic controller based on state observer has
robustness and fault tolerance.

For the convenience of fault-tolerant
controller design, the observer equation can also be
expressed as

2, = At £(%, %)+ G, ) U+ We(), (19

where = = diag[6,,++,6,]. The two tracking error

vectorsare E,;, E, € R?, filter outputis X, X5.
E = f.04) + 0()% - %, (14)

E, = A%, + f,(X, %)+ 0,(X, X,)Zu+WTd(x) -,  (15)

Thefirst step: first of al, xg isided control input

of attitude anglering.

Then we choose the Lyapunov function

v, = % E; E,, and get the derivative of V.

Vi =E[E =B (,00)+ ()% -%). (16)
Attitude angle loop controller is

% =-g ' ) KiE+ R0 -% |, (17)
where K; isthe positive constant matrix.

In order to solve the traditional inversion control
existing differential expansion and restriction
problem, reference [7,8] introduced instruction
filtering. Instruction filtering thought is a virtua

control  volume xg is obtained by a quadratic

constraint filter x5 and X5. A compensator corrects

filter residuals between output and input, as shown
inFig. 3.
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Fig. 2. The proposed robust fault-tolerant control of flight control system block diagram.
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Fig. 3. Theinstruction filter structure diagram.

State equations of constraint instruction filter are:
%)
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(18)
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where &, @, are the damping and bandwidth of

2 Ve

The second step: considering observer equations,
at the same time we choose the Lyapunov function

(o}
filter respectively, and y = x° ,|:z1j|=|:X :l
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The design of angle velocity loop controller is

-1
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where K, isthe positive constant matrix.
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4. Simulation and Verification

X-33 aircraft has four control surface, two
rudders, two flaps, left and right two inboard ailerons,
outboard ailerons.

Namely

uza:[é‘rei’é‘leiv§ﬁ|ié‘lflvé‘rvr’é‘lvrvé‘reoié‘leo]-rr

where 0,4 ,04 ae the right, left media flap,
Oy , Oy aretheright and left flap, &, , 4, arethe

right and left rudder. O, ,d)s, ae the right and left

lateral flaps.
Instruction filter parameter selection is shown
inTable 1.

Table 1. Instruction filter parameter selection.

o Saturatipn Veloci}y
n constraint constraints
p 2101 +20 rad/s | 420 rad/s?
q 2%10%° 120 rad/s | 420 rad/s?
r 2x10° | £20 rad/s | £20 rad/s®

We assume that the following control surface
damage failure: the right media aileron, the left
flaps, the right rudder failure are respectively 40 %,
20 %, 40 %.

Flight control system uses the proposed method in
the paper, the traditiona fault-tolerant control
method [9], not fault-tolerant control method.

Then we can get the attitude angle response
curve. The simulation results are shown in Fig. 4
and Fig. 5.

It can be seen from Fig. 4 under fault condition,
the proposed fault-tolerant control method effect is
superior to the traditiona fault-tolerant method.
Therefore, the paper proposed method is superior to

the traditional fault-tolerant control method, for
uncertain system with external disturbance has
obvious characteristics of fault tolerance.
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Fig. 4. The attitude angle response curve (— — — for the
traditional active fault-tolerant control method, *****~ for

non fault-tolerant control, — for the proposed method).

5. Conclusions

Due to disturbances and parameter uncertainty,
considering the control surface damage problem of
robust fault-tolerant control, we design a new type of
robust fault-tolerant control framework. Based on
adaptive neural network observer, we design the
instruction filter inversion fault-tolerant control
system. Firstly, we give aircraft X-33 attitude
dynamic equation and set up the control surface fault
model. Instruction filter inversion method is used to
design angle loop controller and angular velocity
loop controller. The design of fault-tolerant control
system does not require accurate fault and
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interference information, which are implied in the
adaptive neural network observer design. It can
feedback rea-time hidden information to the
controller, and can readlize the robust fault-tolerant
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(a) Right inboard aileron deflection curve

3 (deg)

3., (deg)

Time(s)

(e) Right rudder deflection curve

control. Finally, the design method is applied to the
control surface fault in spacecraft attitude control,
flight attitude robust fault-tolerant control is realized.

S\el (deg)

3,y (deg)

6Ivr (deg)

(f) Left rudder deflection curve

Fig. 5. Control surface deflection angle (— — — for the traditional active fault tolerant control method,
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